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Abstract

The goal of vision-language navigation (VLN) is to enable an agent to
comprehend human-like instructions and to execute them by finding their
way through the environment. This task requires the integration of language
understanding, visual perception, and decision-making capabilities. In this
paper, we propose a novel approach to VLN that incorporates an additional
pre-exploration stage, a setting that, although not common in the literature,
we believe to be quite natural in many practical applications. Specifically,
we propose our instruction-aware Path Proposal and Discrimination model
(iPPD) to leverage pre-extracted 3D semantic information. iPPD generates
instruction-aware path proposals, which are instruction-aligned candi-
date paths that help reduce the solution space. To better align modalities and
represent map observations along a path, we propose a novel Path Feature
Encoding scheme tailored for semantic maps. Furthermore, we design an
attention-based Language Driven Discriminator to evaluate path candi-
dates and select the best path as the final result. Compared to single-step
greedy decision methods, our method reasons about the global path, thanks
to the information extracted during pre-exploration, which naturally avoids
error accumulation. Extensive experiments demonstrate that the effective
use of global information from the pre-exploration stage can boost the per-
formance of the language-guided navigation task with less training effort.
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Figure 1: Overview of our proposed instruction-aware Path Proposal and Discrimina-
tion (iPPD) schema for the visual language navigation task with pre-exploration allowed.
Semantic 3D metric maps are constructed during pre-exploration and are leveraged for
instruction-constrained path planning.

1. INTRODUCTION

The general-purpose robot assistant of the future assists humans with
daily tasks to reduce labor overhead, for instance, as a housekeeping or indoor
service robot. An essential part of human-robot interaction involves language
guided navigation, that is, enabling the robot to execute instructions given
by a human to reach a target location. This requires the robot to interpret
the natural language instruction, ground it in (usually visual) observations,
and move accordingly.

The vision-and-language navigation (VLN) task [1] was first introduced in
discrete environments, where navigable locations are predefined in a topologi-
cal map known as a navigation graph. While many end-to-end deep learning-
based algorithms have been shown to work well in this setting [2, 3, 4, 5],
there is still a significant gap in deploying these agents directly in real-life
scenarios due to the discrete environment assumption. To narrow this gap
VLN in continuous environments was proposed [6]. However, end-to-end al-
gorithms [6] designed for discrete environments do not perform satisfactorily
in continuous environments, making this a significantly harder challenge.

Cross-Modal Transformer Planner (CMTP) [7] goes beyond previous re-
search [2, 8] by breaking down navigation into two steps: map construction
and planning. In their work, during map construction, agents pre-explore
the whole environment and create a topological map. The agent then nav-
igates step-by-step in the constructed map. Pre-exploration is a reasonable
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assumption in many practical scenarios, such as service robots that usually
work inside a fixed zone. However, we argue that the topological naviga-
tion map may be a suboptimal representation of the environment due to the
loss of environmental information resulting from discretized operations. It is
quite possible to miss the intersection points between a room and a corridor,
which could be an important standpoint described in the language instruc-
tions. In addition, performing the subsequent path planning using only local
information is short-sighted, and it easily leads to an erroneous path due to
the error accumulation problem.

To tackle the aforementioned challenges, we argue that, if pre-exploration
is permitted, planning a path on the constructed global semantic map is better
than doing so only in the local area. To that end, we propose a novel modular
solution for addressing the vision-language navigation task in a continuous
environment. We named our solution Instruction-aware Path Proposal
and Discrimination (iPPD). Our solution follows a map construction,
path proposing, and path scoring pipeline. We first introduce the 3D seman-
tic map as a more informative representation of the environment. During pre-
exploration, the agent takes multiple random paths in the environment and
reprojects the egocentric observations to 3D point clouds. The 3D semantic
metric map can be obtained by combining 2D egocentric semantic segmen-
tation results constrained by 3D consistency. Subsequently, we perform path
planning on the global 3D semantic metric map via a process consisting of
path proposing and path scoring. Proposing random paths on the map could
be simple, but it gets more complicated when taking constraints imposed
by the language instruction into account. Inspired by the classical particle
filter [9], we propose our instruction-constrained path-proposing algorithm,
which yields instruction-aware candidate paths. The algorithm employs par-
ticles to simulate the movement of agents within the constructed map. The
movements of all these particles are guided and constrained by the sparse
action-object sequence extracted from the given instruction. Trajectories of
particles are then taken as candidate paths, to be encoded and scored in
the path-scoring stage. This initial stage of path proposing can be regarded
as preliminary path planning, which is then followed by a subsequent stage
of detailed path selection with our proposed transformer-based path scoring
model. More specifically, we introduce a novel semantic feature extraction
scheme tailored for the 3D semantic map to encode the environment’s infor-
mation associated with a point on a given path into feature representations.
These extracted features of each path are then passed through a transformer-
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based language-driven discriminator to obtain a path-specific score for each
path. The highest-scoring candidate path is selected as the final solution.

In summary, our main contributions are three-fold:

• We introduce a high-resolution 3D semantic map as a more informative
environment representation in a map-language navigation task.

• We propose a novel modular solution in a top-down manner, which ac-
complishes language-guided navigation tasks by proposing paths, path
embedding, and scoring based on 3D and language context.

• Our approach is the first method based on global path planning on
3D semantic maps for language-guided navigation. Compared to tra-
ditional vision-based navigation methods, our approach demonstrates
advantages and showcases potential applications in certain scenarios.

2. RELATED WORK

Vision-and-Language Navigation. In the VLN [1] task, an agent
needs to navigate to a goal location in a photorealistic virtual environment
following a given natural language instruction. Research on the VLN task
has made significant progress in the past few years. Attention mechanisms
across different modalities are widely used to learn the alignment between
vision and language, hence boosting the performance [6, 2, 10, 3, 5, 11, 12,
13]. The improvements of VLN also come from new learning approaches,
such as imitation learning (IL) [4] and reinforcement learning (RL) [2, 14].
Another set of work, such as VLNBERT-CE [15], [16] and [17], focuses
on leveraging existing, well-studied discrete environment solutions. These
approaches typically discretize the action space into topological graphs and
encode panoramic views at each point to represent the surrounding semantics.
At the same time, another line of work focuses on exploiting an actual map
of the environment in the navigation task [18, 19, 20, 21, 22]. Previous works
follow the pipeline of first building a 2D map using RGB and depth images
on the fly, and then integrate the built map into the model as additional
visual input. The 2D map inevitably drops some important environmental
information; for example, when two objects are stacked at one location, only
one will be on the map. Moreover, prior works only treated maps as an
auxiliary modality, there is a lack of study on the map modality itself. In
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Natural language instruction
Turn around and walk out the door to the left of the TV. Once out turn left 
and walk forward past the bookshelf and turn left. Walk all the way down 
the hall way and into the door at the end. Stop once inside the closet.

Particle filter

Instruction parser

Sub-goal sequence (    ) 
Move around, Observe door,  Move left, Observe TV, Move left, Move …
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Module 1: Particle-based path proposing module Module 2: Path scoring module

Figure 2: Language-guided path planning model (iPPD): The architecture consists
of two modules. In the particle-based path proposing module, the language instruction is
processed by GPT3.5 and leveraged to step the particle filter. Particles follow the extracted
actions with a certain amount of uncertainty to sample the next navigable location and
are weighted by observations. The movement of two particles is marked as trajectory 1
and trajectory 2 with red and blue lines, respectively. All valid paths will be encoded and
scored by the path-scoring module. The highest-scored path m̂ is returned as the model
decision.

this work, we introduce a more informative 3D semantic map and propose a
novel solution to conduct path planning directly on the map.

Multi-modal Transformer The transformer model has achieved great
success in natural language processing and vision-language tasks. [23] first
pre-train the BERT model on large-scale text data and achieve state-of-the-
art performance on a wide range of natural language processing (NLP) tasks.
Inspired by the great success of BERT on NLP, a lot of research extends the
transformer model to process both vision and language information. [23, 24]
propose a two-stream BERT model to first separately encode texts and im-
ages and then fuse the two modalities via a cross-modal attention layer.
Another line of work introduces single-stream multimodal BERT, which di-
rectly processes both vision and language information simultaneously using
cross-modal attention layers [25, 26, 27]. Different from previous works which
mainly focus on studying transformer architectures that handle vision and
language data, in this work we further exploit the transformer model and
extend it to process language and 3D map information.
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3. OVERVIEW

We begin by establishing our notation and settings. We follow the setting
of [7], where pre-exploring the environment is allowed. Our pipeline has two
stages: semantic map reconstruction (Sec. 4.1) and language-guided path
planning (Sec. 4.2, Sec. 4.3, Sec. 4.4).

In the semantic map reconstruction stage, an agent takes random walks
in each scene. The collected RGBD observation at each time step t with
camera pose pt is segmented and aggregated into a global 3D semantic map
M on the fly as shown in Fig. 3.

Our language-guided path planning model iPPD can be divided into two
main modules. The first module proposes candidate paths P = {p1, · · · ,pn}
given a natural language instruction T and the start agent pose v0. In par-
ticular, the path proposals are constrained based on the sub-goal sequence
A extracted from T (further explained in Sec. 4.2). Then, we use the second
module Fscore to encode, score, and select the best-ranked path as the final
prediction. We formulate it as:

p̂ = arg max
pi∈P

Fscore(M, T,P) (1)

The main components of stage two are demonstrated in Figure 2. In real
applications, the final best-ranked path can be optimized into an executable
trajectory by a kinodynamic solver. In the Habitat simulator [28], this pro-
cess can be simplified and managed by the greedy geodesic planner. We go
through the details of each individual component in the following section.

4. METHOD

4.1. Semantic metric map reconstruction

We build 3D semantic maps M, as shown in Figure 3 with a voxel-based
representation. The resolution is set to 0.1 meters. At each time step t, the
wandering agent receives an RGB observation It and a depth observation
Dt. We use a pre-trained segmentation model Mask2Former [29] to perform
semantic segmentation on It. The segmentation results describe the label
distribution of each pixel in the egocentric view. Each pixel can be projected
to an egocentric point cloud with the help of Dt and camera intrinsics K.
Together with the camera pose vt, we can obtain the reprojection transforma-
tion Tw from pixel space to world coordinates. We transfer each pixel-wise
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Figure 3: Semantic map reconstruction: We construct a 3D semantic map while
exploring the environment. At each time step, the agent processes RGBD observations
and dynamically updates the map content.

semantic prediction to its corresponding voxel and accumulate the predic-
tions. The semantic map is dynamically updated during exploration. To
tolerate the error of semantic prediction, we threshold out those voxels that
have fewer than 5 observations and max-pool the results accumulated at each
voxel to obtain the final semantic map M. In real-world applications, camera
poses can be estimated using SLAM [30], but since map reconstruction is not
our main focus, we leverage ground truth camera poses returned from the
Habitat [28] simulator.

4.2. Particle-Based Path Proposals

The goal of language-guided navigation is to enable an agent to follow
given instructions and navigate to a specified location. Crucially, actions such
as turning left, turning right, and moving forward serve as critical cues for de-
termining the appropriate trajectory. Meanwhile, key objects observed along
the path can serve as a constraints to further reduce the solution space. How-
ever, due to the intricate and ambiguous nature of natural language, precise
extraction of action and key object information from the given instructions
can be challenging. This implies that if one wants to use language instruction
as a guide for trajectory proposing, it is necessary to deal with its uncertainty.
In response to this challenge, we design an instruction-constrained random
walk-based path proposing strategy, drawing inspiration from the particle
filter algorithm [9]. Our algorithm aims to generate a set of potential paths
P = {p1, ...,pn} by utilizing a sparse sub-goal sequence A.

Sub-goal sequence extraction by LLM As previously elucidated, the
actions and objects mentioned in the instruction serve as critical indicators
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Algorithm 1: Particle Filter Step

Input: Xt−1, At−1 // last particle states, sub-goal

Output: Xt // estimated particles states

1 Atrigger,Acontent = At−1

2 X̄t = Xt = ∅
3 foreach xt−1 in Xt−1 do
4 if Atrigger is MOVE then
5 xt = MOVE(xt−1,Acontent)
6 wt = 1

7 else if Atrigger is OBSERVE then
8 wt = OBSERVE(xt−1,Acontent)
9 xt = xt−1

10 X̄t = X̄t + ⟨xt, wt⟩
11 Pt = KDE(X̄t)
12 resample Xt from Pt

for finding the correct path. We define the movement and observation de-
scriptions as sub-goals A of instruction T . In our algorithm, the extraction
of sub-goals A from a given instruction T is accomplished through prompting
a Large Language Model (LLM). Specifically, we embed the current instruc-
tion T into a predefined prompt and input it into LLM. The LLM constructs
and returns the sub-goal sequence in the required format as described in the
prompt. We use GPT3.5-turbo with manually defined prompts. An exam-
ple is listed in the appendix. The output from the LLM contains two kinds
of sub-goals, OBSERVE([object]) and MOVE([direction]). These will
serve as the observation model and motion model in the particle filter.

Proposing paths by particle filter The path proposing strategy fol-
lows the standard procedure of the particle filter [9]. Our algorithm is il-
lustrated in Algorithm 1. We initialize N particles at the starting position.
Then the particles will follow the sub-goal sequence A. The main components
of the algorithm are defined as follows:

1. MOVE sub-goal will direct all the particles using the manually de-
signed motion models. For instance, MOVE(right) will trigger each
particle to turn a random angle between 30◦ to 150◦ clockwise. Details
of other motion models can be found in the appendix.
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2. OBSERVE sub-goal will trigger the observation model to assign an
importance weight to each particle. The importance is measured by
distance to the closest object mentioned in the current sub-goal within
a radius of five meters.

3. Resampling is the procedure to estimate the sampling distribution
and resample particles to the most certain area. The sampling distri-
bution is estimated from all weighted particles by weighted Gaussian
Kernel Density Estimation (KDE). Each surviving particle contains its
history waypoints which form the trajectory.1

After executing the sub-goal sequence A with a particle filter, we obtain
a sequence of waypoints mi = {m0, ...,mn} for each surviving particle in
Xt. The navigable path pi is then generated by connecting each subsequent
waypoint using A* algorithm on the map. For simplicity, we use the same
symbol v = {v0, ..., vn} to denote each candidate path pi (a set of agent poses)
in the later section. In the case that we cannot find any navigable waypoints
given one instruction, possibly because no actions can be extracted, we choose
to draw multiple random paths as alternatives.

It is worth noting that we do not apply collision detection while moving
the particle. The reason for this is that an action sequence is usually very
sparse in VLN tasks. If we avoid obstacle-crossing at the proposing stage,
candidate paths tend to be located in a very local region, which limits the
diversity of path proposals. Experiments discussing the effects of including
obstacle avoidance can be found in section 5.8.

4.3. Path Feature Encoding

Next, we propose a path feature encoding scheme and apply it to each
candidate path in the semantic map M. Ideally, the path feature Γ repre-
sents the environmental context along the path and can be aligned with the
language representation to verify if this path matches the given instruction.
Since nearby positions may have a large overlap when observed, iPPD dis-
cretizes each path by a fixed distance. It then encodes the local context of
each position along the path to form a feature sequence in temporal order.
Specifically, for each position feature, besides the agent pose at this position,

1In the actual implementation, we performed an equivalent operation for better effi-
ciency. We chose to initialize a large number of particles N = 10, 000 at the start position
and directly drop the particles with zero weights during the execution of the algorithm.
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Figure 4: Path scoring model. The model scores a path with the concatenation of the
[CLS] special token, instruction token sequence, agent poses, and object compasses as
input.

we further introduce an object compass to perceive the local environment,
as illustrated in Figure 2.

The object compass Cobj = {(xi, yi, zi,wi)} contains semantic voxels near
the agent within 5 meters radius. We record voxel positions (xi, yi, zi) in
the egocentric coordinate system centered on the agent. The object com-
pass is treated as a 3D point cloud in a 3D egocentric view. For each point
in the cloud, we embed the voxel’s semantic classes with the GLOVE em-
bedding [31] wi based on its distinguishability. To obtain a permutation-
invariant representation of the points’ order, we use PointNet [32] to encode
the object compass:

h = PointNet(Cobj), (2)

where h ∈ Rd is the d-dimensional feature of the local object’s context at a
given position. In practice, due to GPU memory restrictions and to increase
the diversity of observations, at each position, we randomly sample 200 ob-
served points within the compass range each time the model processes the
data during training.

We also incorporate low-level information, specifically, agent poses v =
{v0, ..., vn}, into the feature sequence. An agent pose feature s aggregates
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location x and orientation θ information at vi as follows:

s = FFNap([PE(x), PE(θ)]), (3)

where [·] represents concatenation, PE(·) is the agent pose positional encod-
ing function [33], and FFNap is a single-layer feed-forward network projecting
the agent position into the d-dimensional feature space. By gathering fea-
tures from all locations v, we obtain the path feature Γ = {[hi, si]}.

4.4. Path scoring and ranking

We deploy a transformer-based model [34] as a Language-driven Discrim-
inator Ftf for scoring paths. The natural language instruction T is tokenized
and embedded using CLIP [35] embeddings ψ(·). We project the word embed-
dings to feature vectors using a single-layer feed-forward network FFNlang(·).

T = FFNlang(ψ(T )), (4)

where T ∈ RN×d is the word sequence representation of length N and di-
mension d.

The Ftf has 12 transformer layers. It takes a concatenated sequence of T
and Γ as input and predicts a score for the corresponding path. A learnable
special token embedding [CLS] is placed at the front of the input sequence
to aggregate context information. The Language-driven Discriminator is
formulated as

ŷndtw, ŷd = Ftf ([[CLS], T ,Γ]) (5)

where ŷndtw and ŷd are two scores projected from the [CLS] token embedding.
Specifically, ŷndtw is the predicted nDTW score and indicates how well the
candidate path shape matches the ground truth path, and ŷd is the predicted
distance to the goal rearranged to [0, 1], which measures how well the agent
stops at the correct location. During inference, we combine the two scores
with a weighted term λ = 0.5 as a uniform metric for path ranking.

ŷ = λ · ŷndtw + (1 − λ) · ŷd (6)

The highest-scoring path is picked as the predicted path p̂.
In addition, we apply the Masked Language Prediction task [23] to en-

hance the model’s context awareness. We randomly mask 15% of the tokens
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Model Explore Local view Map
Val Seen Val Unseen

nDTW ↑ OS ↑ SR ↑ SPL ↑ nDTW ↑ OS ↑ SR ↑ SPL ↑

Seq2Seq ✗ ✓ no map 0.49 0.40 0.30 0.28 0.53 0.39 0.27 0.25
CMA ✗ ✓ no map 0.46 0.38 0.28 0.26 0.56 0.38 0.33 0.31
Waypoint ✗ ✓ no map - 0.51 0.44 0.42 - 0.38 0.34 0.32

VLNBERT-CE ✗ ✓ topological 0.58 0.59 0.50 0.44 0.55 0.53 0.44 0.39
Dreamwalker ✗ ✓ topological - 0.66 0.59 0.48 - 0.59 0.49 0.44
ETPNav ✗ ✓ topological - 0.67 0.59 0.56 - 0.57 0.50 0.46

CMTP ✓ ✓ topological - 0.45 0.36 0.31 - 0.38 0.26 0.22

CM2 ✗ ✗ semantic - 0.50 0.42 0.34 - 0.41 0.34 0.27
WS-MGMap ✗ ✗ semantic - 0.51 0.46 0.43 - 0.47 0.38 0.17

iPPD ✓ ✗ semantic 0.66 0.59 0.51 0.48 0.63 0.52 0.42 0.39
iPPD + sp ✓ ✗ semantic 0.67 0.66 0.57 0.54 0.64 0.58 0.45 0.42

Table 1: Results: Performance of models under different setups (input modalities, w/ or
w/o pre-exploration) evaluated on VLN-CE dataset.

in the instruction and train the model to predict the masked tokens during
training. The total training loss Ltotal is formulated as:

Ltotal = LMLM + L(ndtw)
MSE + L(ed)

MSE, (7)

where LMLM is the Masked Language Prediction loss, and LMSE is the mean
squared error between predicted scores and ground truth (nDTW and dis-
tance to goal).

5. Experiments

5.1. Dataset

We follow the pre-exploration setting of CMTP [7] applied on the VLN-
CE dataset [6] with the original dataset splits for training and evaluation.
The environments in the validation seen set have been observed during the
training phase, but the instructions are not. In contrast, both environment
and instruction have not been observed during training for episodes in the
validation unseen split.

5.2. Implementation Details

Semantic Map Construction. We use Mask2Former [29] Swin-L (IN21k)
pre-trained on MS-COCO [36] as our basic semantic segmentation module.
Semantic labels are manually mapped and filtered to commonly appearing
objects in indoor scenes. We adopt a simple random walk strategy to pre-
explore the environment. We used an average of 200 agents to perform
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random walks in parallel in each environment, with a maximum 1000 steps.
This is a CPU-intensive job but it only needs to explore once the static
environment. More efficient policies such as [20], [37] could be used for this
purpose. Please refer to the supplementary materials for details.
Model Setup. The main learnable component is the path-scoring mod-
ule which contains a PointNet for observation encoding and a transformer
model for score prediction. We optimize the joint model using AdamW [38]
optimizer with a learning rate of 1e-4 and train it on a single NVIDIA-P100
GPU.

5.3. Evaluation Metrics

We evaluate results using the standard evaluation metrics in visual navi-
gation and visual-language navigation tasks [39, 1, 40]: normalized dynamic-
time warping (nDTW), oracle success (OS) which measures the percentage of
predicted trajectories that pass the target point, success rate (SR), and suc-
cess weighted by the normalized inverse of the path length (SPL). We choose
nDTW and SR as our primary metrics, as they cover two important aspects
of the navigation task: (a) predicted and ground truth path similarity, and
(b) accuracy of reaching the target location.

5.4. Main Results

Table 1 exhibits a comparative analysis of our proposed method with
other models. We first review the methods developed with different input
modalities and settings for the VLN-CE task. The first three models [41, 6]
use RGBD observations as input and predict only the next action at each
time step. Recently, constructed maps have gradually been considered an
important modality while doing language-guided navigation. A branch of
research, including works like VLNBERT-CE [15], [16] and [17], focuses on
discretizing the action space through waypoint prediction. This approach
allows the method to leverage existing, well-studied solutions in the original
R2R discrete setting, such as panorama-enhanced topological map encoding
and large-scale pretraining. These methods implicitly encode the represen-
tation of semantic information within each node and remain the state-of-
the-art across various settings. The CMTP [7] model first introduces the
pre-exploration phase and topological map reconstruction in the VLN-CE
task. The reduced action space make it easier for the agent to decide its next
moving position. CM2 [42] and WS-MGMap [43] include metric semantic
maps as an auxiliary modality and put more focus on how to leverage dense
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2D semantic metric local maps at each time step to determine a short-term
trajectory. The models within the RGBD category rely on a deep learning
algorithm to implicitly learn both semantic and geometric information of the
environment from visual input, while models in the Map category exploit the
benefit of maps to preserve explicit spatial information and conduct planning
on the map.

We follow the mapping and planning roadmap [7] and take one step fur-
ther arguing that when pre-exploration is permitted, the algorithm should
maximize the potential benefits of the constructed 3D semantic metric map.
It is natural to perform path planning on the constructed map. We present
the results of our model in two different path-proposing settings in the last
two rows denoted as iPPD and iPPD+sp. (1) iPPD is the standard set-
ting including path proposing and scoring stages as described in the previous
section. As shown in Table 1, our extended setting achieves remarkable re-
sults, especially compared to CMTP [7] which has the most similar setting.
Extensive use of the map constructed in the pre-exploration phase yields a
large performance gain. This result implies that the semantic map has a
great potential in language-guided navigation tasks. (2) In the iPPD+sp
setting we ignore the intermediate waypoints and only consider the endpoints
of the path proposals. We then construct the trajectory as the shortest path
between the start agent location and endpoint. We observe that instead of
using the full path proposed by our path-proposing algorithm, only taking
the end point of the proposed path results in better performance in the VLN-
CE dataset. This result is underlined in Table 1. Despite exhibiting superior
performance, it heavily depends on the assumption of the shortest path,
which could potentially align with the annotation bias within the VLN-CE
dataset.

5.5. Does the constructed map contain enough semantic information of the
environment?

Due to errors in the 2D semantic segmentation, constructed semantic
map inevitably contains noise. We argue that, on the one hand, our voting-
based map construction strategy reduces multi-view semantic inconsistency,
especially for common object categories such as “table” and “chair”. On the
other hand, our random sampling strategy for observations at each camera
pose vi introduces robustness to handle the noisy observations. In this exper-
iment, we compare our model trained with the constructed semantic maps
to one that uses ground truth maps. The ground truth semantic maps are
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Model
Val-Seen Val-Unseen

nDTW ↑ SR ↑ nDTW ↑ SR ↑

iPPD 0.66 0.51 0.63 0.42
w/ sp 0.67 0.57 0.64 0.45
w/ gt map 0.68 0.53 0.63 0.41
w/ gt map + sp 0.68 0.56 0.64 0.45

Table 2: Constructed semantic map v.s. ground truth map: navigation performance
trained on maps with different qualities.

constructed from the human-annotated semantic mesh provided by Matter-
Port3D [44] dataset. As shown in Table 2, the ground truth map shows a 2%
better success rate in the validation seen environment without the shortest
path prior. For other settings, using our constructed maps achieves com-
parable performance to that of using the ground truth semantic map. This
does not mean that the overall quality of our constructed maps is as good
as ground truth maps, but the semantic information which can be extracted
and leveraged by our path-scoring module seems to be sufficient. From the
visualization of both semantic maps in Figure. 5, we can observe that our
reconstructed map can handle objects that have relatively high segmentation
accuracy well, such as tables and beds. Affiliated objects such as pillows or
small objects with fewer observations, such as bedside lamps are sometimes
missed.

5.6. How effective is each component in iPPD ?

To verify the effectiveness of each component of our proposed iPPD, we
conduct ablation studies as shown in Table 3. Agent pose information ad-
dresses the agent’s state in the environment. This information is vital, as we
can see from the second row of Table 3. Models trained without agent pose
information show a drop of 11% in SR on seen environments and a 9% drop
on unseen environments. Next, we verify the effectiveness of the encoded
path features using our proposed object compass. The results in the last row
of Table 3 show the importance of point-wise context information. Remov-
ing the object compass from the model results in a significant drop in all
evaluation metrics; the SR on seen environments and unseen environments
decreases by 24% and 12% respectively.
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Figure 5: Comparison between our constructed map and ground truth semantic map with
a subset of semantic labels rendered.

Model
Val-Seen Val-Unseen

nDTW ↑ SR ↑ nDTW ↑ SR ↑

iPPD 0.66 0.51 0.63 0.42
w/o agent pose 0.62 0.40 0.57 0.33
w/o obj compass 0.54 0.27 0.56 0.30

Table 3: Ablation study for iPPD method on both the val seen and val unseen data splits
of VLN-CE dataset.

5.7. How the object compass radius influence the performance?

In this section, we conduct an ablation study to examine the impact of
the object compass radius on performance. As shown in Table 4, a radius
of five meters provides the best balance between the diversity of semantic
information and the distinguishability of each local region. Notably, there is
a significant 3% increase in the success rate when comparing the radius of
five meters to seven meters on the unseen split.

5.8. What is the influence of different trajectory-proposing strategies?

In this section, we investigate the impact of different trajectory-proposing
strategies. Our particle-based path-proposing algorithm relies on the ex-
tracted sub-goal sequence. An effective path proposal algorithm should have
the capability to propose candidate paths, including at least one path that

16



Radius
Val-Seen Val-Unseen

nDTW ↑ SR ↑ nDTW ↑ SR ↑

1m 0.32 0.24 0.30 0.19
3m 0.61 0.45 0.59 0.37
5m 0.66 0.51 0.63 0.42
7m 0.63 0.50 0.61 0.39
9m 0.59 0.45 0.56 0.36

Table 4: Performance evaluation of various object compass radius using the iPPD method
on both the val seen and val unseen data splits of the VLN-CE dataset.

can reach a nearby location of the ground truth target. Furthermore, the
trajectory shape should be close to the human-annotated trajectory follow-
ing the instruction. Therefore, we evaluate various path-proposing strategies
using the Recall metric, which quantifies the proportion of data that has can-
didate paths with endpoints within one meter of the goal position. We also
use the average nDTW (anDTW) metric, which evaluates the average
similarity between recalled paths and the ground truth path. Additionally,
we visualize the proposed paths of different trajectories to provide a visual
explanation, complementing the above metrics.

We evaluate three strategies with a fixed number of initial particles, i.e.,
10, 000: (a) Random walk (random): The simplest action space. The par-
ticle can move in any direction and cover any distance at each time step.
In this experiment, we bound the maximum moving distance of each time
step to 10 meters. The maximum number of action steps is limited to five to
better fit the size of indoor scenes; (b) Proposed setting (proposed): The
proposed setting described in the previous section; (c) Proposed setting with
obstacle avoidance (+ obstacle): Particle movement is not allowed if there
is any obstacle between two sampled waypoints.

The random walk strategy ignores the information in the instruction.
While the algorithm may suggest potential routes, it is apparent that the
resulting trajectory is chaotic and difficult to conform to the instruction-
guided ground truth path, as depicted in Figure 6. Table 5 illustrates that
the incorporation of the obstacle avoidance strategy detrimentally impacts
the Recall metric. When obstacles are considered during path generation,
particles are easily blocked, as presented in Figure 6. This results in a large

17



②

①

①

①

②

②
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Figure 6: Visualization of classical cases for three different path-proposing strategies. Pur-
ple dots are proposed waypoints obtained from different strategies, they are later connected
by A* shortest path planning in order. The demoed action sequence is [turn around, turn
left, turn left, turn left ]. Our default path proposing strategy (proposed strategy) can
better recall the ground truth path with acceptable sampling efficiency. Obstacle avoid-
ance strategy always failed to generate sufficient long paths due to the sparsity of directly
mentioned actions in the instruction. The random walk cannot guarantee the instruction
constraints and is likely to generate zig-zag trajectories.

Strategy
Val-Seen Val-Unseen

Recall anDTW Recall anDTW

proposed 73.65 0.695 70.96 0.726
+ obstacle 48.84 0.792 43.01 0.806

random 62.85 0.708 54.65 0.727

Table 5: Comparison of different path proposing strategies evaluated by the recall of
ground truth goal location and average nDTW

percentage of short local paths, such as trajectory 1. Consequently, there is
a substantial decrease in the number of proposed paths, leading to a perfor-
mance drop. However, with a sufficient number of particles, this strategy has
the potential to find a more accurate trajectory set. As shown in Table 5, the
average nDTW of the method proposed + obstacle is significantly higher
than that of the other two methods. Due to the balance of sampling effi-
ciency and recall, we choose to use our current proposed strategy but also
acknowledge the benefits of including obstacle avoidance for future research.

5.9. Time complexity

The training time for our fully supervised semantic-map-based solution
is significantly more efficient than that of other methods. For example, the
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classic Waypoint [41] method requires 5 days using 64 GPUs with reinforce-
ment learning, while the more recent ETPNav [17] method, which employs a
discretized action space and imitation learning, still takes 1 day with 2 GPUs.
In contrast, our method only takes 12 hours with a single GPU, facilitating
quick deployment of the agent in a known environment.

Regarding inference time, our solution completes the task in just 10 min-
utes for the unseen split of VLNCE dataset (i.e., 0.3 seconds per instruction).
Other methods, which rely on sequential prediction, take much longer. Even
the simplest Seq2Seq [6] method takes four times longer than our solution.

6. Discussion

In this section, we discuss the potential avenues for future research and
the limitations of our method. With our experimental results, we show that,
under the situation where pre-exploration is allowed, the VLN task could
be better addressed using the pipeline of global map construction and path
planning. Despite the significant performance gains achieved by our proposed
method, there remains a substantial discrepancy between its performance and
that of humans. Therefore, it would be valuable to further investigate better
ways to encode visual information about the environment or design a more
effective and efficient instruction-guided local or global map path planning
algorithm. The limitations of our method are as follows:

1. The reconstructed semantic maps only contain rough semantic infor-
mation. These rough metric maps lose the instance-level information,
which makes it impossible to execute instructions containing specific
objects. How to include more of the instance-level information and even
their attributes in the map is an interesting future research direction.
Likewise, the information we extract from the language instruction is
sparse and can be suboptimal. How to include recent advancements in
LLM to supplement possible intermediate steps is worth further study.

2. Since the path-proposing strategy is not accurate enough, we still need
to rely on a trained scoring model to rank the paths. It is possible
to include an advanced probability method with a more accurate sub-
goal extraction strategy to achieve good performance in the zero-shot
setting. We expect to work in this direction in future work.
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7. Conclusion

In this paper, we explore a new avenue for addressing the difficult vision-
and-language navigation task in the continuous environment. Following the
previous work [7], we allow the agent to establish a memory of the envi-
ronment by pre-exploration. We then argue that when pre-exploration is
permitted, the agent should maximize the benefits of using the constructed
memory. To this end, we propose a particle-based path proposal algorithm
and a cross-model transformer path scorer to conduct path planning on the
constructed map. Experimental results illustrate that our proposed solution
can boost the performance of the VLN task.
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Appendix A. Instruction parsing

We use GPT3.5-turbo as the instruction parser. We construct the prompts
with three examples as follows:

[{

"role": "system",

"content": "You are a helpful, pattern-following assistant that

parses human instruction to a sequence of sub-goals. Each

sub-goal can only be one of the following patterns:

OBSERVE([object])

MOVE([direction])"

},

{

"role": "system", "name":"example_user",

"content": "Exit the bedroom and turn left. Walk straight passing

the gray couch and stop near the rug and a table."
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},

{

"role": "system", "name": "example_assistant",

"content": "

OBSERVE: bedroom

MOVE: forward

MOVE: left

MOVE: forward

OBSERVE: couch

MOVE: forward

OBSERVE: rug

OBSERVE: table"

},

{

"role": "system", "name":"example_user",

"content": "Go straight past the pool. Walk between the bar and

chairs. Stop when you get to the corner of the bar. That’s

where you will wait."

},

{

"role": "system", "name": "example_assistant",

"content": "

MOVE: forward

OBSERVE: pool

MOVE: forward

OBSERVE: bar

OBSERVE: chairs

MOVE: forward

OBSERVE: bar"

},

{

"role": "system", "name":"example_user",

"content": "Go pass the white table, turn right at the second

door, move pass the piano and stop"

},

{

"role": "system", "name": "example_assistant",

"content": "

MOVE: forward

OBSERVE: table
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MOVE: right

OBSERVE: door

MOVE: forward

OBSERVE: piano

MOVE: forward"

},

{

"role": "user", "content": ""

}]

We conduct a human evaluation on the performance of our instruction
parser’s extraction quality. We invite three students to evaluate whether the
extraction results cover the major components of the instruction. Each stu-
dent is assigned 200 instructions and their parsing results. If the extracted
key components cover 90% or more of the components in the instruction,
the parsing result is scored 5. If it covers 20% or less, the parsing result is
scored 1. The score distribution is shown in Table A.6. More than 90% of
the instructions cover at least 80% of the key components. This indicates
relatively high coverage, but since there are still instances where key com-
ponents might be missed, our random trajectory samples can help mitigate
these issues.

Score 5 4 3 2 1

Ratio 48.68% 42.31% 8.79% 0.14% 0.08%

Table A.6: Human evaluation of LLM parsing performance

Appendix B. Details of Motion models

We set the following standard actions:

1. Move forward: Moving the particle along the current orientation for
a distance uniformly sampled from 0 to 10 meters. 0 distance is set
to tolerate excessive extraction. For instance, “you can see a sofa on
the left” is easily misidentified as the action “turn left”. With the 0
distance, the particle has a probability of staying in its current state.
Furthermore, we add Gaussian noise with distribution N (0, 1) to the
current orientation to handle probable missed turning action.
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2. Move left/right: The turning actions are defined as turning a certain
degree followed by a moving forward action. Since the turning angle
will not be specified in the language, we set a uniform distribution with
the range 30◦ to 150◦ for turning left/right.

3. Move around: Turning around is usually mentioned at the beginning
of the instruction. We set a turning direction of 180◦ together with
Gaussian noise N (0, 1).

Appendix C. Details of observation model

To query the description of observations extracted from instruction on the
map cannot simply based on string matching since similar meanings can have
various forms of expression. We extract CLIP [35] features of both semantic
map labels and extracted descriptions and calculate the cosine similarities
between them. The highest-scored semantic label is treated as the observed
semantics at this time stamp.

The observation model will take the observed semantics to query the map
region within five meters of the particles. The weight assigned is the inverse
distance towards the queried semantics.
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